Impacts of different types of wheelchair backrests on the propulsion performance on a manual wheelchair: an exploratory study

The 32nd International Seating Symposium

Guy Robert OT¹, Firass Mayassi OT¹, Annie-Pier Landry OT¹, Sara Beauregard OT¹, Rachid Aissaoui Eng PhD²,³ Dany Gagnon PT PhD²,⁴

¹ Programme d’Aides techniques, CIUSSS Centre-Sud-de-l’Île-de-Montréal - Installation Institut de réadaptation Gingras-Lindsay-de-Montréal (IRGLM)
² Centre for Interdisciplinary Research in Rehabilitation - Installation IRGLM, Laboratoire de pathokinésiologie, Montréal
³ Département de génie et d’automatisation de la production, École de technologie supérieure (ÉTS), Montréal
⁴ Programme de physiothérapie, École de réadaptation, Université de Montréal, Montréal
The majority of manual wheelchair users with a spinal cord injury present:

- Trunk and lower limbs sensory motor deficiencies
- Trunk control deficiencies
- Manual wheelchair propulsion difficulties

Those deficiencies and difficulties result in A lower manual wheelchair propulsion performance

- A profiled and rigid manual wheelchair backrest, with or without lateral thoracic supports, or a soft backrest also with or without thoracic support, are often recommended in our clinical practice.
- The decision making process for those types of backrests for our manual wheelchair users, remain an iterative process based on our clinical experiences, intuitions, trials and errors, and adjustments following interactions between therapists and users.
There is minimal scientific data available to inform therapists about the decision making process for the proper choice of backrests, for manual wheelchair users.

No biomechanical studies have quantified the effects of different backrests, for experimented users, on the manual wheelchair propulsion.
Research objective

Compare the effects on propulsion of four different types of frequently used backrests, with quantitative and qualitative measures, among experimented spinal cord injury users of manual wheelchairs.

The hypothesis was that a rigid manual wheelchair backrest, with lateral thoracic supports, would optimize the propulsion performance.
Backrests used

- JAY 3 without thoracic supports
- JAY 3 with thoracic supports
- Tension Adjustable Backrest Upholstery
- Harmoni
Methodology

1. Manuel wheelchair propulsion test:

20 meters straight line propulsion test: 20 meters slalom propulsion test

Start line

- Each test is chronometered twice with each backrest
2. Registration of spacial - temporal and biomechanical data

- Two rear wheels with instrumented handrims were installed (SMARTWHEEL™) on the personal wheelchair of each participant.

- The registered data were analysed with a homemade program developed by our pathokinesiological research laboratory team.
Methodology

Principal results:

- Quantitative measures
 - Spatial - temporal data
 - Propulsion and recovery time phases
 - Total time and speed
 - Biomechanical datas
 - Total force and tangential force (resulting in direct propulsion force)
 - Rate of mechanical efficiency = (Tangential force/Total force) * 100

- Qualitative measures
 - Analogue Visual Scale (comfort, stability and performance)
METHODOLOGY

Statistics Analysis:

- **Descriptive Statistics**
 - Average and Standard deviation.
 - Number of observations and proportions.

- **Shapiro-Wilk test to verified the data distribution**
 - Average and standard deviation.

- **Friedman Test to confirm the differences between the backrests ($p<0.05$)**
 - No significant difference.
Results

<table>
<thead>
<tr>
<th>Participant Characteristics (N=10)</th>
<th>Average (standard deviation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>8M/2F</td>
</tr>
<tr>
<td>Age (years)</td>
<td>44,4 (13,5)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>75,4 (25,3)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>170,47 (7,85)</td>
</tr>
<tr>
<td>Spinal cord lesion level</td>
<td>Between C7 & T2</td>
</tr>
<tr>
<td>Severity of lesion</td>
<td>ASIA A or ASIA B</td>
</tr>
<tr>
<td>Time since spinal cord injury (years)</td>
<td>19,1 (11,1)</td>
</tr>
</tbody>
</table>
RESULTS 20 Meters Propulsion Test

Propulsion Phase

- Time (seconds) $p=0.16$

Recovery Phase

- Time (seconds) $p=0.56$

Speed

- Speed (meters/seconds) $p=0.05$

Type of backrests:
- Stand. Upholstery
- JAY 3 Thoracic S.
- JAY 3 Without
- Harmoni
RESULTS – Propulsion slalom Test

Time

\[p = 0.88 \]

- Stand. Upholstery
- JAY 3 Thoracic S.
- JAY 3 Without T.S.
- Harmoni

Backrests:
- Stand. Upholstery
- JAY 3 Thoracic S.
- JAY 3 Without T.S.
- Harmoni
RESULTS – Total Force

Propulsion phase

Force (Newton) vs Normalized Time (100%)

Maximal Values

Average Values

Backrests:
- Standard
- JAY 3 Thoracic S.
- JAY 3 Without T.S.
- Harmoni

$p=0.70$

$p=0.47$
RESULTS – Tangential Force

Propulsion Phase

Normalized Time (100%)

Force (Newton)

Average Values

$\bar{p} = 0.24$

Maximal Values

$\bar{p} = 0.36$

Backrestsr:
- Stand. Upholstery
- JAY 3 Thoracic S.
- JAY 3 Without T. S.
- Harmoni

Force (Newton)

Stand. Upholstery
JAY 3 Thoracic S.
JAY 3 Without T. S.
Harmoni

Average Values

$\bar{p} = 0.24$

Force (Newton)

Stand. Upholstery
JAY 3 Thoracic S.
JAY 3 Without T. S.
Harmoni
RESULTS – Mechanical Efficiency

Mechanical Efficiency (%)

Normalized Time (100%)

0 10 20 30 40 50 60 70 80 90

Average Values

Backrests:
- Stand. Upholstery
- JAY 3 Thoracic S.
- JAY 3 Without
- Harmoni

\(p = 0.32 \)
RESULTS – Qualitative Measures

Comfort

![Graph showing comfort levels across different backrests.]

Performance

![Graph showing performance levels across different backrests.]

Stability

![Graph showing stability levels across different backrests.]

Backrests:
- Stand. Upholstery
- JAY 3 Thoracic S.
- JAY 3 Without T.S.
- Harmoni
RESULTS – User’s choices

90% Agreement between O.T. and User’s Choices.

User’s choice

Number of participants

<table>
<thead>
<tr>
<th>Backrests</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand. Upholstory</td>
<td>2</td>
</tr>
<tr>
<td>JAY 3 Thoracic S.</td>
<td>4</td>
</tr>
<tr>
<td>JAY 3 Without T.S.</td>
<td>1</td>
</tr>
<tr>
<td>Harmoni</td>
<td>1</td>
</tr>
</tbody>
</table>
DISCUSSION

Spatial-temporal and biomechanical data remain similar

- Globally the spatial-temporal data, the applied forces on the handrims, the mechanical efficacy, are comparable between the different types of backrests during the straight and slalom propulsion.

VARIABILITY of comfort, the stability and the perceived performance:

- The comfort, the trunk stability and the performance remains also comparable between the different backrests.
- The final choice of backrests is moderately influenced by the perception of comfort, stability and performance, and this could explain the great variability of responses.

Principal limits of this study:

- Small group of participants
- Experimental effort’s
- Trial period of time
CONCLUSION

- The results confirms the importance of personalizing the therapeutic actions leading to the recommendations of different types of backrests, according to the effects on comfort, stability and performance, on the propulsion of a manual wheelchair.

- Further research seems necessary on this subject, with a larger group of experimented manual wheelchair users.
Our Thanks

This project was principally financed by the foundation of l’Institut de réadaptation Gingras-Lindsay-de-Montréal.

The needed equipment for the completion of this project was financed principally by the Canadian Foundation for innovation.